这是一篇新发布的题为“比例的数学应用题模板”的文章非常值得一读,我们怎么样才能写好一篇范文呢?我们会参考相应的范文模板。 了解文章的构思脉络,对于阅读会有莫大的裨益,如果这篇文章对你有很大的启发请把它保存起来!
比例的数学应用题模板(篇1)
教学内容:P53~54、第4~13题,思考题,正、反比例应用题的练习。
教学目的:进一步掌握正、反比例的意义,能正确应用比例知识解答基本的正、反比例应用题,并沟通不同解法之间的联系,进一步提高学生判断,分析和推理等思维能力。
教学过程:
一、基本训练
P53第4题,口答并说明理由
二、基本题练习
1、做练习十第5题
2提问:按过去的算术解法,第(1)题要先求什么数量?第(2)题呢?
用比例的知识怎样解答呢,请大家自己做一做。
评讲:说一说是怎样想的?
(板书:速度时间=路程(一定)=反比例
=正比例
提问:正、反比例应用题解题过程有什么相同的地方?解题方法有什么不同?为什么?
3、练习小结:(略)
三、综合练习
3、练习十第11题
启发学生用几种方法解答
4、做练习十第13题
(1)提问:这是一道什么应用题?可以怎样列式解答?
(2)把树苗总数看做单位1,成活棵数是94%,你还能用比例知识解答吗?
四、讲解思考题
引导:增加铅以后,铅与锡的比是5:3,有怎样的关系式?
五、课堂小结:
通过本课的练习,你进一步明确了哪些内容?
六、作业:
第8、9、10题
七、课后作业:
第6、7、12题
比例的数学应用题模板(篇2)
例1某车间要加工2220个零件,单独做,甲、乙、丙三人所需工作时间的比是4∶5∶6。现在由三人共同加工,问完成任务时,三人各加工了多少个?
错解由甲、乙、丙三人单独做所需工作时间的比是4∶5∶6,推出甲、乙、丙三人工作效率的比是6∶5∶4,用按比例分配的思路解。
评析上述解答错在把甲、乙、丙三人工作效率的比看成是6∶5∶4。诚然,如果甲、乙二人工作时间的比是4∶5,那么,甲、乙二人工作效率的比就是5∶4,这是正确的。但是,把甲、乙、丙三人工作时间的连比是4∶5∶6转化成甲、乙、丙三人工作效率的连比是6∶5∶4,那就大错了!不错,工作效率的比等于工作时间比的反比。从已知条件看,甲、乙二人工作时间的比是4∶5,所以,甲、乙二人工作效率的比是5∶4;乙、丙二人工作时间的比是5∶6,所以,乙、丙二人工作效率的比是6∶5。这里的“5∶4”表示甲5份,乙4份,“6∶5”表示乙6份,丙5分,两个比都是两重相比,其中同样表示“乙”有几份的数在前后两个比中并不相同,我们怎么能将这两个比直接变成甲、乙、丙三人工作效率的连比呢?显然,上述解答中把甲、乙、丙三人工作效率的连比看成是6∶5∶4,是错误的。
正确的解答应当是:甲、乙、丙三人工作效率的比=
容易看出,因为5∶4=15∶12,6∶5=12∶10,所以,由上述“甲、乙二人工作效率的比是5∶4,乙、丙二人工作效率的比是6∶5”,也可以得到甲、乙、丙三人工作效率的比是是15∶12∶10。
例2有两瓶同样重的盐水,甲瓶盐水盐与水重量的比是1∶8,乙瓶盐水盐与水重量的比是1:5。现将两瓶盐水并在一起,问在混合后的盐水中盐与水重量的比是多少?
错解认为在甲瓶盐水中,盐的重量是“1”,水的重量是“8”,在乙瓶盐水中,盐的重量是“1”,水的重量是“5”,于是,将两瓶盐水并在一起,便得到盐的重量是(1+1=)2,水的重量是(8+5=)13。
(1+1)∶(8+5)=2∶13
答:在混合后的盐水中盐与水重量的比是2∶13。
评析上述解答的主要错误是把两种物质重量的最简比,看成了就是两种物质具体重量的比。甲瓶盐水盐与水重量的比是1∶8,不等于说在这瓶盐水中盐的重量是1千克,水的重量是8千克,乙瓶的情况也是一样。从已知条件可以看出,在甲瓶盐水中,盐有1份,水有8份,盐和水一共有(1+8=)9(份),在乙瓶盐水中,盐有1份,水有5份,盐和水一共有(1+5=)6(份)。因为两瓶盐水是“同样重”,但甲瓶有9份,乙瓶只有6份,所以,可见两瓶盐水中每“1份”的重量有多少是不相同的。上述解答简单地将两瓶盐水中每份重量不同的盐和水的份数分别相加,然后再将两个“和”组成一个比,便造成了解答的错误。
正确的解答是:1∶8=2∶16,2+16=18;
1∶5=3:15,3+15=10。(2+3)∶(16+15)=5:31
答:在混合后的盐水中盐与水重量的比是5∶31。
比例的数学应用题模板(篇3)
教学内容:P51-52例1、例2,正、反比例应用题
教学目的:认识正、反比例应用题的特点,理解掌握这种应用题的解题思路和解题方法,能正确解答,发展学生的思维。
教学过程:
一、复习
判断下面的量各成什么比例
(1)工作效率一定,工作总量和工作时间。
(2)路程一定,行驶的速度和时间。
二、导入新课
说数量关系,判断成什么比例,列出等式。
一台抽水机5小时抽水40立方米,照这样计算,9小时可抽水X立方米。
三、学习新课
1、学例1
(1)将导入题中的X立方米改成多少立方米?
(2)讨论:怎样用比例的知识来解这道题止的导入题的想法能给我们启示吗?
(3)试一试:学生练习讲解例题,教师根据情况作点拨。
(4)小结:说一说用正比例知识解答这道应用题要怎样想?怎样做?
2、数学想一想
放手让学生自己做,并说说列等式的依据。
3、教学例2
(1)出示例2,读题
(2)讨论并试一试:能仿照例1的解题过程用比例的知识解答例2吗?
(3)说一说:将自己的解法及想法告诉大家。
教师作点拨
4、学习想一想
独立练习后班次讲
5、小结:解题思路
(2)判断比例关系
(3)找出对应数值
(4)列出等式解答
追问:你认为解题关键是什么?
四、巩固练习
1、做练一练
2、练习十第1题
评讲时比较异同
五、课堂小结:
这节课你学习了哪些内容?你认为哪些是重点?
六、作业
P5354第2题,第10题。
七、课后作业
P53第3题
比例的数学应用题模板(篇4)
教学目的
1.通过复习,使学生能够正确判断出应用题中所涉及的相关联的量成什么比例关系.
2.通过复习,能够使学生利用正反比例的意义正确、熟练的解答应用题.
3.通过复习,培养学生的分析能力、综合能力以及判断推理能力.
教学重点
通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.
教学难点
通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.
教学过程
一、复习准备.
下面每题中的两种量成什么比例关系?
(1)速度一定,路程和时间.
(2)总价一定,每件物品的价格和所买的数量.
(3)小朋友的年龄与身高.
(4)正方体每一个面的面积和正方体的表面积.
(5)被减数一定,减数和差.
谈话引入:我们今天运用正反比例的知识来解决实际问题.
(板书:用比例知识解应用题)
二、探讨新知.
(一)教学例5(用比例解答下题)
修一条公路,总长12千米,开工3天修了1.5千米.照这样计算,修完这条路还要多少天?
1.学生读题,独立解答.
2.学生反馈:
3.分析:
(1)为什么需要用正比例解答?
(2)12和要求的天数之间有什么关系?
4.小结:我们在做题时,根据注意题目中的数量关系,不仅需要判定运用什么比例方法,而且还要注意找准题目中的对应关系.
(二)反馈.
1.某车队运送一批救灾物品,原计划每小时行60千米,6.5小时到达灾区,实际每小时行了78千米.照这样计算,行完全程需要多少小时?
2.大齿轮与小齿轮的齿数比为4∶3.大齿轮有36个齿,小齿轮有多少个齿?
三、巩固反馈.
1.一张大纸,如果裁成长36厘米,宽26厘米的小纸张,可以裁成28张;如果裁成长18厘米,宽13厘米的小纸张,可以裁成多少张?
2.某车间有男工25人,女工20人.如果男工增加15人,要想使男工和女工人数的比不发生变化,女工应该增加多少人?
3.一项工程,10人去做24天可以完成;如果每人的工作效率不变,现在需要提前4天完成,需要多少人?
4.两个底面半径相等的圆柱体,第一个圆柱的高是第二个圆柱高的.第二个圆柱的体积是60立方米,第一个圆柱体的体积是多少立方米?
四、课堂总结.
通过这堂课的学习,你有什么收获?
比例的数学应用题模板(篇5)
教学内容:教材第115页正、反比例的意义和正、反比例应用题、练一练,练习二十二第1、2题。
教学要求:
1、使学生更清楚地认识正比例和反比例关系的特征,能正确判断成正比例关系或反比例关系的量。
2、使学生进一步掌握正比例和反比例应用题的数量关系、解题思路,能正确地解答成正、反比例关系的应用题,进一步培养学生分析、推理和判断等思维能力。
教学过程:
一、揭示课题
这节课,复习正、反比例关系和正、反比例应用题。通过复习,要进一步认识正、反比例的意义,掌握正、反比例应用题的数量关系、解题思路和解题方法,能更正确地判断成正、反比例关系的量,正确地解答正、反比例应用题。
二、复习正、反比例的意义。
1、复习正、反比例的意义。
提问:如果用x和y表示成比例关系的两种相关联的量,那么,什么情况下成正比例关系,什么情况下成反比例关系?
想一想,成正比例关系和成反比例关系的两种量有什么相同点和不同点?
指出:正比例关系和反比例关系的相同点是:都有相关联的两种量,一种量随着另一种量的变化而变化。不同点是:成正比例关系的两种量中相对应数值的比值一定,成反比例关系的两种量中相对应数值的积一定。
2、判断正、反比例关系。
(1)做练一练第1题。
指名学生口答。
提问:判断是不是成比例和成什么比例的根据是什么?
(2)做练习二十二第1题。
指名学生口答。
3、判断x和y这两种量成什么关系,为什么?
指出:我们根据正、反比例关系的特点,可以判断两种相关联的量成什么比例。如果一道题里两种量成正比例或反比例关系,我们就可以应用比例的知识,根据比值相等或者积相等的数量关系来解答。
三、复习正、反比例应用题。
1、做练一练第2题第1题。
让学生读题,判断两种量成什么比例。
提问:这道题成正比例关系,要根据什么相等来列式解答?
指名一人板演,其余学生做在练习本上。
集体订正,突出列式的等量关系是比值一定。
做练一练第2题第(2)题。
指名一人板演,其余学生做在练习本上。
集体订正。
提问:这道题是怎样想的?成反比例关系的应用题,要根据什么来列式解答?
3、启发学生思考:
你认为正比例应用题实际上是我们过去学过的哪一类应用题?反比例应用题是哪一类应用题?
怎样解答正、反比例应用题?
指出:用比例知识解答应用题,要先判断两种相关联的量成什么比例。如果成正比例,根据比值相等列等式解答;如果成反比例,根据积相等列等式解答。
四、课堂作业
练习二十二第2题
比例的数学应用题模板(篇6)
1、学校买来一批书,共1000本,把这批书按3:4:5分给四、五、六三个年级,每个年级各分到多少本?
2、(1)果园里梨树与桃树的比是3:5,这个果园里共有果树40棵,梨树与桃树各多少棵?
(2)果园里梨树与桃树的比是3:5,已知桃树有40棵。这个果园共有果树多少棵?
(3)果园里梨树与桃树的比是3:5,已知梨树比桃树少40棵,这个果园共有果树多少棵?
3、一个长方形的周长是40分米,它的长与宽的`比是3:2,这个长方形的面积是多少?
4、小明在期末考试中数文、数学、英语的均分为75分,它的三门学科成绩的比为8:8:9,它的三门成绩分别是多少?
5、把一段长96厘米的铁丝做一个长方体框架,长方体的长宽高的比是5:4:3,这个长方体的长、宽、高分别是多少?
6、加工一批零件,王师傅每小时加工48个,与李师傅每小时加工个数的比是4:5。两个共同加工3小时,可以加工多少个零件?
7、工厂买来120吨生产原料,其中的 分给一车间,其余的按3:5分给甲乙两个车间,甲乙两个车间各分到多少吨?
8、一种药水是用药粉和水按3:100配成的。
(1)要配制这种药水515千克,需要药粉多少千克?
(2)有水60千克,需要药粉多少千克?
(3)用90千克的药粉,可配成多少千克的药水?
9、一杯盐水,盐与盐水的比为1:5,再加上16克盐后,盐与盐水的比为1:4,原来盐水有多少千克?
10、甲乙两地相距600千米,两车分别从两地相向同时出发,3小时后两车相遇,已知快车与慢车的速度比为11:9,快车与慢车的速度分别是多少?
11、某车间有140名职工,分成三个生产小组,已知第一组和第二组人数比为2:3,第二组和第三组人数比为4:5,这三个小组名有多少人?
12、一班和二班的人数比为8:7,如果将一班的8名同学调到二班去,那么一班和二班的人数的比为4:5,求原来两班各有多少人?
13、一批书如果每包20本,要捆18包,如果每包30本,要捆多少包?
14、张大妈上个月用了8吨水,水费是12、8元,李奶奶家用了10吨水,李奶奶家上个月的水费是多少元?
15、一台拖拉机2小时耕地1、25公顷,照这样计算,8小时可以耕地多少公顷?
比例的数学应用题模板(篇7)
教学内容:课本第91页例4;练一练;《作业本》第39页。
教学目标:进一步巩固反比例的意义,掌握用反比例方法解应用题的方法和步骤。
教学重点:学会用反比例解归总应用题
教学难点:判断题中哪两个量是成反比例的量,列出等积式。
教学过程:
一、复习准备:
1、三角形面积一定,底和高成什么比例?为什么?
2、甲、乙两种量,只要它们相对应的数的积一定,这两种量一定成反比例,对吗?举例说明?
二、新授:
1、教学例4。
例4:一艘货轮每小时航行20千米,6小时可以到达目的地。如果要5小时到达,每小时航行多少千米?
观察:
⑴、题中有哪几个量?
⑵、从题中可见哪个数量是一定的?
分析:
想:因为速度时间=路程,由于4小时与3小时航行路程相同,可确定行驶的速度与时间成反比例,所以两次航行与时间的乘积相等。
解:设每小时需航行X千米。
5X=206
X=2065=24(千米)
X=24
(检验)
答:每小时需盘航行24千米。
2、改条件:5小时到达为每小时行15千米,要求几小时到达应怎样列式?
3、试一试。
(1)甲种铅笔每支0.25元,乙种铅笔每支0.20元,买甲种铅笔32支的钱,可以买乙种铅笔多少支?
(2)同学们做操,每行站30人,正好站12行,如果每行站36人,可以站多少行?
分析:⑴、从已知数量可知,哪个量是一定的?
⑵、可利用比例解题,也可利用一般方法解题?
三、巩固练习:练一练。
四、小结:
今天学习了什么?
五、《作业本》p39.
比例的数学应用题模板(篇8)
数学正反比例应用题(精选50题)
应用题一般由文字和数字相结合,给出条件,最后提取文中的数字进行正确的运算作答。应用题一直是小学数学中的难点与得分高点,很多同学也是因为应用题而与别人拉开分距。攻破应用题,既是提高数学成绩的一个重要环节,也是锻炼孩子思维理解能力的主要方式。今天,大家准备了数学正反比例应用题(精选50题),供大家练习,希望大家都能有一个好成绩!
比例的数学应用题模板(篇9)
教学目标:
1.在自主探索学习中理解按比例分配的意义,掌握按比例分配应用题的结构特点以及解题方法,能正确解答按比例分配应用题。
2.培养发现问题、提出问题、分析问题、解决问题的能力,合作学习的能力和总纳概括的能力。
3.创设民主和谐的学习氛围,在关注培养学生主动的探索意识、灵活的思维品质过程中形成积极的学习情感。
重点与难点:
沟通比与分数之间的联系,理解按比例分配应用题的结构特征和解题方法。
教学过程:
课前让每一个学生到生活中调查某些事物各组成部分的比,并且说一说是怎么获得这些信息的。
一、引发阶段
1、情境诱发
陈叔叔和王叔叔,他们俩合资开了一家文具厂,经过一年的辛勤经营,除去交税、发工资和扩张等费用,还净多10万元。他们坐在一起商量分钱的事。(课件)(陈叔叔和王叔叔,合资开了一家文具厂,一年的净利润是10万元。他们两人各应分得多少钱?)
2.猜猜看,他们是怎么分这10万元钱的?如果我再给你这条信息---(陈叔叔和王叔叔两人投资额的比是2:3,构成例1)你还是坚持原来的观点吗?
3.陈叔叔和王叔叔各分得多少万元?你会算吗
二、探究阶段
1、自主探索
先自己独立尝试着解答,然后把你的想法告诉你们小组内的同学,说说你是怎么想的,比比谁的方法更好。
2、集体交流。
哪个小组先上台发言?其他同学可要听仔细了哦!如果有不同的解法可以补充交流,听清楚他们的方法了吗?谁再来说一遍?
其他同学有意见或不明白的地方吗?可以向发言人提问。
答案是否正确呢?你们有什么办法验证?
3、你们觉得哪种方法比较简便,和前面的知识联系最密切,而且有一定的规律性?
4、分析归纳
这种应用题有什么特点?(告诉我们总数,按照比例分成几部分)
你们在刚才的解答过程中,已经探索出了一种解决实际问题的方法,那就是按比例分配。
一个数量按照一定的比例来进行分配,这种分配方法叫做。
5、你见到过、听说过现实生活中的按比例分配的情况吗?
我省中考热点学校招生计划按比例分配
证券市场中股票发行是按比例分配的。
美国总统大选各州选票是按比例分配的。
在建筑业中也有很多地方用到按比例分配。
三、实践应用
只要你做个有心人,你一定会有很多收获。其实在你身上也藏着按比例分配的学问呢!
出示:身体中的按比例分配12周岁的儿童头部与头以下的高度的比一般是2:13。
看到这条信息,你想到了什么?说说你的身高,算一算自己的头部的高度,看看你估计得准不准?(我的身高是150厘米,我的头部高度约是多少)
四、情境延续
1.再看例1
文具厂在张叔叔和王叔叔的经营下,越来越红火。第二年,李叔叔也投资加入。他加入一年后,纯利润可能会达到多少万元?这时,他们三人各得多少万元?出示(这一年,张、王、李三人的投资分别是4万元,5万元,3万元)
2.尝试解答,同桌互相讨论。
3.展示交流各种方法,你打算如何检验?
4.这题与刚才做的题有什么相同点和不同点?
相同点:都告诉我们总数,都是按照比例分成几部分(都可以看成占总数的几分之几)
不同点:刚才是两种量的比,现在是三种量的比。
五、发展应用:
1、有些同学不但数学学得好,还十分爱看书。学校校长非常支持,决定投入6000元,添置一些科技书、故事书和优秀作文选。假如你是校长,会把这6000元按照怎样的比来分配?
1:2:3代表什么?你为什么要这样设定?
1:1:1表示什么意思?(平均分)
请你选择其中的一个比,算一算各花多少钱?
反馈交流。
有用1:1:1来解的吗?哪种解法最简单?
按1:1:1分配就是平均分,平均分是特殊的按比例分配。
2、甲乙两数的平均数是25,两数之比为2:3。求甲数与乙数。
3、六年级有92名学生参加三个课外兴趣小组。第一组与第二组人数的比是2:3,第一组与第三组人数的比是3:4。三个小组各有多少人?
六、反思评价
1.在这节课中,你最喜欢哪一部分知识的学习?为什么?还有什么疑惑吗?
2.在这节课中,你的同桌哪些地方最值得你学习?